FANDOM


完整版2.0参见[1],请协助搬运内容和图片。

超盐酸,Hyperhydrochloric Acid,分子式为(HCl)10,学名三乙亚氯烷基环丁亚氯烷

工业生产 编辑

超盐酸是重要的化工产品,但是由于其实验室合成的条件已相当苛刻,所以现在各大化工厂都是高额向化学实验室分批收购,通过卡车运输。由于各实验室的RP[1]有所不同,送来的超盐酸也有所不同,所以工业制品超盐酸的浓度不高,质量也不甚好。

实验室合成 编辑

超盐酸的合成条件很苛刻,目前只有一种人工的实验室合成方法,是由中国籍锑星裔的著名物理学家、化学家赵明毅[2]于公元前250年发现的。经《锑氏密集[3]的记载,这个方法“得天独厚,浑然天成,乃锑氏赵家之秘传也”。但由于年代久远,没人知道他是否真正合成了超盐酸,所以这赵明毅只被认为是发现了该方法而不是首次应用了该方法。

2007年,经万草园主[4]的研究和改良,提出了当今世界各地使用的方法——锑[5]催化法,在实验室合成塔进行。其步骤为:在盛有γ-卡和锑单质的密闭容器中配制38%的氯化氢水溶液,小心把温度升高到523.15K,压强升高到500MPa,氯化氢分子会按10:1的比例化合成(HCl)10分子。该反应的机理如下:

① 2分子氯化氢在γ-鉲的催化下生成反-乙氯(III)烯((E)-1λ3,2λ3-dichlorene),再加成1个HCl分子生成一氯代乙氯(III)烷(1λ3,2λ3-trichlorane)。

② 3分子一氯代乙氯(III)烷在锑单质的催化下形成四元氯环:三乙氯(III)烷基环丁氯(III)烷(tris(1λ3,2λ3-dichloranyl)-13,23,33,43-tetrachloretane)。(以下用R-代表乙氯(III)烷基)。

结构 编辑

超盐酸是一个结构复杂的化合物,按照经典的布-万氏结构式[6],超盐酸的结构如图4。

但是这个模型很难解释超盐酸独特的理化性质。因此,赵明毅运用了量子超理学[7],成功的解释了超盐酸复杂的结构。实际上,超盐酸在刚合成时成键的确如图所示。但在合成后0.1s,氯原子核开始按照超理统计规律分裂,即每个氯原子核完全分裂成质子和中子。中子几乎保持静止,而180个质子则通过强相互作用形成了庞大介稳的p180结构,即赵明毅所说的“魔键[8]”(图5)。其余的180个电子在这个结构中高速运动,由于此时原子核事实上已经不存在,电子可以看作既在原子核中运动又在原子核外运动。赵明毅对超盐酸结构的解释被称为质子轨道理论[9]。该理论很好地符合了实验结果,因此赵明毅获得了1098年的第一届沈括杯梦溪化学奖[10]

物理性质 编辑

超盐酸的密度为2.0g/cm3,熔点-273.15K,沸点273.15K(标准大气压),常温常压下是粉红色的气体。经理论推测,纯的超盐酸是无味的,但目前合成的超盐酸具有芳香的气味,这可能是因为混有部分芳香烃(质子再结合导致)的缘故。

化学性质 编辑

超盐酸是很强的质子酸,在水溶液中完全电离出180个氢离子(质子)和1个一百八十五中子合一百八十电子离子。该电离方程式如下:

(HCl)10 \rightleftharpoons 180H+ + [n185e180]180−

经理论测算,超盐酸的酸性为魔酸[11]的3.451×107倍,但由于条件的限制,目前在超盐酸的水溶液中并没有观测到(HCl)10分子。所以超盐酸被看作是真正的完全电离。

因为超盐酸中存在几乎裸露的质子和电子,它具有极强的氧化性和还原性,仅次于电极。其氧化还原的标准电极电势如下:

(HCl)10 + 180e- \rightleftharpoons 90H2 + [n185e180]180−
175D+ + 5T+ + 180e- \rightleftharpoons (HCl)10

由于其标准电极电势高于地球人安全电压36.0V,超盐酸在氧化还原中的使用受到锑星标准APS-B0250[12]的严格控制。

超盐酸能氧化氦气,产生9273.15K的高温,生成一种彩色荧光的液体。经赵明毅测定该产物为二氯化九氦,但其中氦的分数氧化数令他百思不得其解。2007年2月,万草园主在经过了闭门29天的“格旧书致知[13]”,终于提出了He9Cl2的布-万氏结构式(如图6)。并根据“诱导效应[14]”,判断其中的Cl为-5价,8/9的He为+1价,1/9的He为+2价。

(HCl)10 + 9He \longrightarrow He9Cl2 + H2 + 8HCl

超盐酸能氧化氟气,生成氢气和黑色固体FCl。经测定,固态FCl为离子晶体F+Cl-,其晶体结构为氯化铯型。对于为什么在FCl中氟显正价目前众说纷纭。比较认同的解释是因为氟的电子亲合势小于氯,同时比氯少了3s、3px、3py和3pz四个轨道的缘故。

(HCl)10 + 5F2 \longrightarrow 5H2 + 10FCl

超盐酸具有极强的腐蚀性,能溶解Pt、Au和几乎所有的有机物,但是Cs单质却会在其中钝化,生成难溶的配合物Cs(HCl)10。因此超盐酸通常用Cs器皿盛装。

(HCl)10 + Cs \longrightarrow Cs(HCl)10

生物活性 编辑

没有确切证据表明超盐酸对生物体有任何的有害作用。但是据报道目前在人类的胃液里发现了[n185e180]180−。很有可能人类在利用微量的超盐酸消化,而不是所谓胃蛋白酶。这一发现证明了人体是一个精密协调的系统,可以合成很多自然界中难以合成的物质。同时这也说明了现代生物学理论有待修改。

用途 编辑

超盐酸在工业上具有重大用途。超盐酸的年产量和年消耗量往往可以成为一个国家化学工业和其他工业发展繁荣程度的一种相当精确的指标。

超盐酸主要用于制造合成氯化物、正价的含氧化合物、正价的含氟化合物、稀有气体化合物等。同时可以作为铯单质冶炼时的保护剂。

医学上超盐酸被用于辅助治疗消化不良等症状,目前全世界各大医院的250个试验点正在进行临床第二期试验。如果试验成功,超盐酸将有望于2010年13月投入市场。这将给世界上百万受消化不良折磨的患者带来福音。

配位化学编辑

1、引言 我们知道超盐酸有两种存在形式——一种为经典结构,即带有一个四元环的三乙氯(Ⅲ)烷基环丁氯(Ⅲ)烷形式,另一种为量子超理学所解释的魔键形式,前者会在生成后0.1s内转化为后者。显然,一个庞大而且碱性极弱的粒子团难以具有复杂的配位性质,因此我们在这里主要讨论第一种超盐酸,即三乙氯(III)烷基环丁氯(III)烷(tri(1λ3,2λ3-dichloranyl)-1λ3,2λ3,3λ3,4λ3-tetrachloretane)的配位性质。(以下用缩写TDTC

)
Efaf154c510fd9f962431f1c2d2dd42a2934a4c2
2、制备

我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp?杂化转变为sp?d?杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超盐酸相当。而当失去1个氢离子时,[n185e180]180-形成条件就会被破坏(失去了氢的氯原子核变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?

(1)氧酸H₂OO₃
Bc5974ec54e736d1fc942d7d93504fc2d4626993
   机理很简单,利用了氧酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。(2)催化量的超盐酸高鉲+铯单质(反应进行后期加入)反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。

(3)定量的超氢氧化钠(钾,等等)+锑场 反应放出的大量的热足以使溶液剧烈沸腾,利用锑场控制热量将杂质全部蒸出,留下纯度很高的NaH9Cl10晶体。

3、σ配位

D0503afae6cd7b89bf35a6f6072442a7d8330ec4
TDTC的三条乙氯基容易弯曲,因此在定量地失去7个质子时,末端氯的负电荷较为集中,因此可以作为一个很好的三齿配体,可以作为构成正八面体或正四面体的的一个面(会略有畸变)。

(1)正八面体型

①双TDTC配位 根据四元环上“凸出的氯”的方向,这种情况下会有具有不同旋光度的各种异构体,但由于性质差别不大,因此不再赘述。配位中心通常为倾向于正八面体配位的粒子,例如[Co(Ⅲ)(TDTC)₂]; ②混合配位

这一类物质的性质多变,而且对配位中心的要求不高,留给大家去进一步研究。(2)正四面体型
F27364600c33874477a38e0a590fd9f9d72aa03d

这是TDTC形成最稳定的配位方式,四面体的第四个顶点可以安插各种单齿配体。 (R=X,NH₃,CN-,PPh₃,OH-,C5H5,etc.)

然而,特殊之处在于,许多看起来不可能存在的离子能够存在于螯合体系中,包括S(Ⅵ),

Fc4e8918367adab42a89ba3583d4b31c8601e4c6

Mn(Ⅶ,Ⅵ),Cr(Ⅵ),Fe(Ⅵ),Xe(Ⅳ,Ⅵ,Ⅷ),等等。它们甚至在水溶液中是稳定的。

(图片以[Mn(Ⅵ)ClH₃Cl10]为例) 这无疑需要极强的酸性,而仅凭TDTC是无法达到的,我们只能将其解释为此时的氯原子之间仍存在着魔键,使得TDTC具有了“真正的”超盐酸的性质,但是形成了一个平衡——氯原子之间的化学键和魔键是流变的。

4、π配位

9f0740c2d562853553e8505698ef76c6a7ef6310

 TDTC电离后的四元氯环上有14π电子,因此具有芳香性,能形成夹心配合物,这种情况对于原子半径很大的过渡金属较为常见。

注释 编辑

  1. RP,人品之意。因近期具有人品问题的人过多,大家说话时便简化为RPWT。
  2. 赵明毅,真名彭化流,代号超级理科生。原籍锑星,移居银河系太阳系地球亚洲中华人民共和国。著名的理论物理学家、理论化学家,21世纪诺贝尔物理奖、化学奖的看好者。由于该人在晚年迷信智慧心法学的小宇宙观,走到了科学的对立面,于2007年被咸蛋超人用破波击毁。赵明毅有句名言:“你们将为你们的无知和狂妄而流下悔恨的眼泪,而这些,我都将作为我科学事业道路上的绊脚石。”著有论文集《锑氏密集》、《超理百科》,自传《大锑赵明毅》、《锑王赵明毅》等。
  3. 《锑氏密集》,赵明毅的论文集。囊括了赵明毅从史前到公元前1年(地球纪元)的所有研究成果,包括酸性的草木灰、碱性的酸雨、钠离子与二氧化碳的反应等等。该书全宇宙仅有3本,1本保存在锑星赵明毅故居,一本保存在地球中国北京百度贴吧,一本保存在地球中国北京圆明园(被英法联军焚毁)。
  4. 万草园主,著名的化学家、辩论家,苏维埃传统化学的支持者。曾维护了pH的理论,坚持了真理。他发展了俄国化学家Александр Михайлович Бутлеров(阿列克萨得尔•米哈依洛维奇•布特列洛夫)提出的结构式,创造出布-万氏结构式。将有机化学中的诱导效应扩展到无机化学领域并成功建立了NH4Cl和Fe3O4的分子模型。著有《夜读偶记》、《中学化学指南》等书。
  5. 鉲,指卡元素,符号Ka,与钋元素同核异构。质子数平均值为84,相对原子质量平均值为250。原子结构特殊,超出量子力学解释范围,需量子超理学解释。卡元素的氧化态有+2、+3、+4、+6、+7和+8。卡单质有三种晶形,分别是α-卡、β-卡和γ-卡。卡元素性质活泼,主要以化合态存在于泰伯里亚矿中。“鉲”是“锎”的简化字,亦为卡元素的中文名称。
  6. 布-万氏结构式,由A.M.Бутлеров提出并被万草园主发展的物质结构理论,成为当代苏派化学科学的主流。该术语由化学家ariosty提出。其主要内容是:一切物质由分子构成,分子内部各原子按照化合价数目比成键。
  7. 量子超理学,赵明毅为解决卡元素原子结构而提出的物质结构理论,是对量子力学的补充与发展。其主要内容是:原子核在一定条件下分裂出质子和中子,分子内质子以强相互作用结合产生“魔键”,电子在质子云中高速运动。该理论在解释超盐酸结构时获得了极大的成功。
  8. 魔键,一种神秘的化学键。与σ键、π键和δ键不同,魔键的本质是强相互作用而不是电磁相互作用。魔键理论的提出扩展了量子化学的内容,是量子超理学战胜量子化学的一次飞跃,并为其最终取代量子化学奠定了理论基础。
  9. 质子轨道理论,PO,又称破理论。是赵明毅应用量子超理学对超盐酸模型的数学近似。其主要内容是:分子中的质子不是孤立的而是整体的,质子在分子中运动形成“质子云”,电子按照量子超理学统计规律在质子云中高速运动。
  10. 沈括杯梦溪奖,古代中国的最高自然科学奖。设有数学奖、物理奖、化学奖、生物奖、天文奖和地理奖六大奖项。宋朝政府为纪念伟大的科学家沈括而设立。奖项名称因沈括的科学著作《梦溪笔谈》而得名(图8)。
  11. 魔酸,超强酸的一种,由液态氟化氢与五氟化锑混合而成。魔酸是很强的质子酸,其酸性约为纯硫酸的1×108倍。魔酸是究级版化尸水的第一候选(图9)。
  12. 锑星标准APS-B0250,the Biology-250th Standard of Antimony Planet,锑星的第250号生物学标准,规定地球人在使用超盐酸进行氧化还原反应时一定要戴银手套或铜手套,以防触电。
  13. 格旧书致知,旧文化运动的口号。2005年,万草园主发起旧文化运动,旨在普及苏派化学,宣传辩证唯物主义。其主要内容是:以书为据,特别是苏联和我国的旧书。
  14. 诱导效应,是A.M.Бутлеров为解释“同一种元素为何在不同的有机物分子中表现出不同的性质”而提出的理论。其主要内容是:一种元素遇到另一种元素时的表现,必会受到第三元素的影响。万草园主将诱导效应应用于无机化学,解释了N2O各原子的化合价(端氮原子-3、中氮原子+5、氧原子-2)获得成功。万草园主还发现了诱导效应的实质,即“分子中各原子的化合价一定正负相间”。

您使用了广告屏蔽软件!


Wikia通过广告运营为用户提供免费的服务。我们对用户通过嵌入广告屏蔽软件访问网站进行了使用调整。

如果您使用了广告屏蔽软件,将无法使用我们的服务。请您移除广告屏蔽软件,以确保页面正常加载。

查看其他FANDOM

随机维基